Geophysical signal processing using sequential Bayesian techniques

نویسندگان

  • Caglar Yardim
  • Peter Gerstoft
  • Zoi-Heleni Michalopoulou
چکیده

Sequential Bayesian techniques enable tracking of evolving geophysical parameters via sequential observations. They provide a formulation in which the geophysical parameters that characterize dynamic, nonstationary processes are continuously estimated as new data become available. This is done by using prediction from previous estimates of geophysical parameters, updates stemming from physical and statistical models that relate seismic measurements to the unknown geophysical parameters. In addition, these techniques provide the evolving uncertainty in the estimates in the form of posterior probability density functions. In addition to the particle filters (PFs), extended, unscented, and ensemble Kalman filters (EnKFs) were evaluated. The filters were compared via reflector and nonvolcanic tremor tracking examples. Because there are numerous geophysical problems in which the environmental model itself is not known or evolves with time, the concept of model selection and its filtering implementation were introduced. A multiple model PF was then used to track an unknown number of reflectors from seismic interferometry data. We found that when the equations that define the geophysical problem are strongly nonlinear, a PF was needed. The PF outperformed all Kalman filter variants, especially in low signal-to-noise ratio tremor cases. However, PFs are computationally expensive. The EnKF is most appropriate when the number of parameters is large. Because each technique is ideal under different conditions, they complement each other and provide a useful set of techniques for solving sequential geophysical inversion problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

دربارۀ شناسایی بیزیِ دنباله‌ای نقطۀ تغییر

The problems of sequential change-point have several important applications in quality control, signal processing, and failure detection in industry and finance and signal detection. We discuss a Bayesian approach in the context of statistical process control: at an unknown time  τ, the process behavior changes and the distribution of the data changes from p0 to p1. Two cases are consi...

متن کامل

Sequential Bayesian techniques applied to non-volcanic tremor

[1] This paper uses sequential Bayesian techniques such as particle filters and smoothers to track in time both the non-volcanic tremor (NVT) source location on the plate interface and the angle of arrival via horizontal phase slowness. Sequential Bayesian techniques enable tracking of evolving geophysical parameters via sequential tremor observations. These techniques provide a formulation whe...

متن کامل

An Overview of Recent Advances in Monte-Carlo Methods for Bayesian Filtering in High-Dimensional Spaces

Nonlinear non-Gaussian state-space models arise in numerous applications in statistics and signal processing. In this context, one of the most successful and popular approximation techniques is the sequential Monte-Carlo (SMC) algorithm, also known as the particle filter. Nevertheless, this method tends to be inefficient when applied to high-dimensional problems. In this chapter, we present, an...

متن کامل

Generalised linear mixed model analysis via sequential Monte Carlo sampling

We present a sequential Monte Carlo sampler algorithm for the Bayesian analysis of generalised linear mixed models (GLMMs). These models support a variety of interesting regression-type analyses, but performing inference is often extremely difficult, even when using the Bayesian approach combined with Markov chain Monte Carlo (MCMC). The Sequential Monte Carlo sampler (SMC) is a new and general...

متن کامل

A Decision between Bayesian and Frequentist Upper Limit in Analyzing Continuous Gravitational Waves

Given the sensitivity of current ground-based Gravitational Wave (GW) detectors, any continuous-wave signal we can realistically expect will be at a level or below the background noise. Hence, any data analysis of detector data will need to rely on statistical techniques to separate the signal from the noise. While with the current sensitivity of our detectors we do not expect to detect any tru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013